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Executive Summary 

The purpose of this document is to identify potential travel behavior changes, conflicts, and 

synergies of three technology mega-trends: 1) automated vehicles (AV), 2) electric vehicles 

(EV), and 3) traveler connectivity. This analysis focuses on how the adoption of such 

technologies (one or multiple) might impact travel behavior choices, such as trip generation, 

route choice, and destination choice. Current methods to capture these changing behaviors in 

modeling and simulation are also reviewed. A thorough (though not exhaustive) literature review 

was conducted primarily focused on travel behavior impacts from any one of the three 

technologies (AV, EV, traveler connectivity) to help inform potential shifts in behavior in the 

mega-trend era. The overarching goal of this analysis is to identify research activities that can 

help fill gaps in modeling and simulation approaches to accurately capture shifting travel 

behaviors resulting from the convergence of three mega-trends. 

Three key research questions were used to guide the literature review and to answer the 

overarching questions of how AVs, EVs, and traveler connectivity technologies will impact travel 

behaviors and how such behaviors can be integrated into existing modeling and simulation 

tools.  

Question #1: What are the travel behavior impacts resulting from automation, connectivity, and 

vehicle electrification? 

AV, EV, and traveler connectivity technologies impact travel choices in different ways. All three 

technologies provide numerous benefits to the individual traveler by reducing travel time 

uncertainty, providing new, convenient alternatives to private vehicle travel, reducing travel costs 

due to ability to multi-task, and reducing monetary operational costs by smoother driving 

behaviors and lower costs of electricity (compared to gas). More specifically, several travel 

behaviors were identified for each technology, and are as follows: 

• Traveler Connectivity 

o Digital Navigation – Real-time travel information and recommendations has led to selfish 
travel behaviors and misuse of transportation infrastructure. 

o Shared Service Models – Smartphone connectivity has led to new and convenient 
mobility service offerings (e.g., ridehailing), which has led to significant growth of these 
services, which behave and interact with transportation infrastructure in new ways (fleet-
based decision making, deadheading behaviors, pickup/drop-off curb interactions). 

• Automated Vehicles 

o Induced Travel – Lower values of travel time (VOTT) were observed for commute and 
long-distance trips for AV. This finding indicates that travelers are willing to increase their 
delays when multi-tasking options are available. 
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o Zero Occupancy Travel – Additional travel without a passenger is expected for AV 
owners because travel costs can be reduced or eliminated by sending empty vehicles to 
cheaper parking or to pick up family/friends. These behaviors will create additional trips 
affecting traditional trip generation models. Additionally, travel cost functions will require 
modifications because monetary factors will become more important compared to travel 
time and delay costs when vehicles are operating in zero occupancy mode. 

• Electric Vehicles 

o Complex Decision-making Processes – EV owners must consider their state of charge 
(SOC) at the origin/destination, battery range, access to charging, charger reliability and 
wait times, and potential charging at the destination when making travel choices. These 
complex choices lead to a variety of different travel behaviors, from eco-routing to 
tradeoffs between detour length and charging speeds/reliability. 

o Risk Attitudes – EV owners exhibit different risk attitudes, which can lead to different 
choices that are tied to the current constraints of EV technology (range, limited access to 
charging, large variations in range) and technology unfamiliarity. 

Question 2: What are some potential synergies and conflicts between emerging technologies 
that could alter travel behavior? 

The combination of mega-trend technologies was found to be complementary in many settings. 

However, it is also easy to identify situations where the coupling of two or more technologies led 

to individual benefits at the expense of system performance. The identified relationships were 

as follows: 

Traveler connectivity + AVs: 

• Network efficiency [complementary] – Real-time data processing and automated decision 
making can help shift network behaviors closer to system optimal (especially in fleet 
settings) in the appropriate policy and regulatory framework. 

• Network inefficiency [conflicting] – Without policy/regulation, AVs will likely be programmed 
to maximize individual benefits at the expense of network performance. Enhanced 
automation capabilities with real-time network information can act upon real-time data from 
multiple sources to further improve individual decision making resulting in degraded network 
performance. 

• Transportation affordability [complementary] – Removing the driver in public mobility 
systems (e.g., transit, ridehailing) can drastically reduce operational costs, which can be 
passed on to users in the form of reduced fares and improved service performance. 

• Reduced operational costs [conflicting] – High upfront costs and low operational costs of 
AV technologies can lead to greater vehicle miles travelled for affluent populations, which will 
increase societal costs in a mixed-use environment. 

AVs + EVs: 

• Access to charging [complementary] – Automation expands access to charging and 
decouples the need to have charging available at specific destination locations. The ability to 
send AVs to charge reduces EV constraints, leading to greater use and adoption. 
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• Regional travel [conflicting] – AVs provide new, convenient options for regional travel which 
can be cancelled out by limited range of EVs. This can lead to slower adoption of EVs and 
increased regional travel with internal combustion engine (ICE) vehicles. 

• Zero-occupancy travel [conflicting] – Zero-occupancy vehicles will seek to reduce 
monetary costs (e.g., fuel costs, parking fees) as opposed to minimizing travel time. This 
could result in electric AVs seeking out congestion and stop-and-go traffic to reduce energy 
consumption and avoid parking fees. 

Traveler connectivity + EVs: 

• Enhanced charging reliability [complementary] – Real-time information related to routing, 
charger locations, and wait times will provide travelers with information to ease range 
anxiety and reduce overall EV travel costs. This will facilitate faster EV adoption and 
increased EV travel. 

• Selfish routing/charging [conflicting] – Access to more real-time information can also 
facilitate increased opportunities for individuals to make utility maximizing choices, which 
can cause greater network/charging congestion. 

Question #3: What are the gaps/challenges related to representing travel behavioral shifts in 

current AMS tools? 

Based on findings from the literature review, four key areas were identified in which current AMS 

tools have shortcomings when it comes to modeling scenarios in the mega-trend era. The four 

focus areas and specific details related to gaps/challenges are as follows: 

• Shared service models – There is a need to integrate changing behaviors resulting from 
AVs and EVs for fleet-based mobility services with AMS tools, such as how drivers will 
behave when using EVs (near-term) and how operations will differ when shared mobility 
services eliminate drivers and use AVs (longer-term). Fleet behaviors differ from individual 
travelers because different factors are considered when making choices about picking up 
passengers, traveling between passengers, and dropping off passengers.  

• Zero-occupancy trips – New types of trips and new interactions with infrastructure are 
enabled by AVs, such as autonomous charging, self-parking, and pickup/drop-offs. Zero-
occupancy VMT is expected to be significant, which will require modeling these types of trips 
(including the charging phase for electric AVs) to better understand network impacts and 
design interventions. New tradeoffs will also need to be evaluated (access time vs. parking 
costs) to gain a deeper understanding about human decision-making when interacting with 
AVs. 

• Network utilization – Travel connectivity apps that provide real-time recommendations 
about routing, charging, and parking can result in significant network delays and misuse. 
Understanding these new interactions and incorporating them into AMS tools will be 
important to design strategic interventions. This will likely require a high-resolution 
representation of the network that includes information such a bridge clearance, steep 
grades, sharp turns, lane widths, among others and methods to estimate macro-level 
impacts using multi-resolution modeling frameworks. 
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• EV charging/routing – Travel choices become more complex in the mega-trend era due to 
numerous new constraints and capabilities. In addition to travel cost and travel time, 
common travel choices will require information related to SOC at origin/destination, vehicle 
range, charging supply including charger types, location, pricing information, and wait times. 
In addition, due to variation in battery range, different risk attitudes will also have to be 
modeled because route, charging, and cancelation decisions will vary between individuals. 
Finally, charging itself now represents a significant part of a trip, which can have widespread 
network implications in not captured in modeling and simulation frameworks. 

Based on these findings, the following potential future research directions are presented to 

guide travel behavior and modeling/simulation research in the mega-trend era.  

• Travel choices differ significantly between ICE and EV drivers due to range anxiety, range 
constraints, and limited (not well distributed) charging infrastructure. EV and ICE drivers 
traveling between similar origin-destination pairs may take completely different routes and 
park at different locations based on their vehicle state of charge (SOC), risk attitudes, and 
charging access at the destination. Therefore, travel behaviors (including risk attitudes) as a 
function of vehicle fuel type need to be studied further and integrated into current AMS tools.  

• Constrained charger supply in both time and space can significantly alter travel behaviors in 
unforeseen ways, especially when self-charging becomes available using autonomous 
vehicles. The charging portion of the trip (location, time required, wait times, charger type) is 
a significant factor impacting travel choices, which is often not considered in EV modeling 
and simulation. Further research is needed that quantifies travel behaviors as functions of 
charger locations, queueing at charger, charging times, charger types, and whether vehicles 
are human driven or autonomous. Real-time charging recommendation systems will also 
impact travel choices as EVs gain market share, which is another area for future study.  

• Real-time recommendations from travel apps, such as Google Maps or Waze, have 
drastically increased cut-through traffic and have caused problems when local context is not 
considered (e.g., bridge clearance for large trucks, school zones, steep grades). Such 
problems will likely increase in the megatrend era with recommendations for charging, eco-
routing, autonomous parking, among others. Therefore, there is a need to study human 
responses to real-time recommendations (across a variety of contexts) and integrate these 
behaviors into AMS tools. There is also a need to better understand the underlying data that 
is being used to inform recommendations and the computational tradeoffs of including richer 
data streams for improved guidance. 

• Numerous automobile manufacturers are developing and deploying SAE L2-L3 (hands-free) 
systems using pre-mapped roads and/or specific operational design domains (ODD). In 
such ODDs, drivers can monitor the vehicle hands-free (for SAE L2) or can engage in other 
tasks (for SAE L3), reducing individual travel costs. The rapid development of these systems 
and scarce publicly available data limits our understanding of human decision making when 
presented with tradeoffs between travel time and ease of driving. To address this gap, 
further research is needed to identify changing travel behaviors resulting from commercially 
available, hands-free features. For example, will travelers select longer routes and/or 
prioritize pre-mapped routes (usually freeways) if they offered more hands-free driving? 

• In the longer-term, highly automated vehicles (SAE L4-L5) bring new capabilities, which can 
alter the relationship between travelers, vehicles, and infrastructure. For example, zero-
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occupancy vehicles can be used to charge/park themselves and potentially run errands 
(assuming service models evolve with the technology). Such vehicles will utilize different 
cost functions compared to human drivers, with higher importance placed on monetary costs 
(e.g., parking costs, fuel costs) and reduced sensitivity to travel time/delay. The potential for 
zero-occupancy travel to contribute to significant VMT, congestion, and delays highlights the 
importance of considering these types of trips in modeling and simulation exercises. In the 
near-term, the majority of SAE L4-L5 vehicles will likely be part of a ridehailing fleet. And if 
such shared mobility services gain significant market penetration, it will be important to 
integrate fleet-optimal algorithms (considering both AVs and EVs) and perspectives into 
AMS tools, which is an area with limited research. 
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1 Introduction 

1.1 Background 

Emerging transportation technologies and services are changing the way people use and 

interact with the transportation system. Three technologies of special interest to both 

transportation decision makers and users are automation, connectivity, and electric vehicles, 

which are characterized in this document as “mega-trends” due to their potential to significantly 

disrupt travel behavior and transportation system use. Widespread adoption of mega-trends 

promises significant benefits to safety, efficiency, and sustainability; however, it is unclear how 

the mega-trend technologies will interact with each other, potentially cancelling out benefits 

without strategic interventions. Up to this point, numerous studies have forecasted travel 

behavior change due to automation, connectivity, and electrification technologies in isolation. 

This review considers these technologies together to glean realistic insights related to 

complementary and/or conflicting relationships between the various technologies that can affect 

system performance. The overall goal is not to answer all potential questions related to travel 

behavior change resulting from the coming together of three mega-trends, but to gather related 

literature and pose important questions to help guide future research efforts. 

In this paper, we refer to travel behavior as the choices, decisions, and patterns that travelers 

exhibit when moving between locations throughout the transportation network. A strong 

understanding of these choices and behaviors are needed for analysis, modeling, and 

simulation (AMS) tasks to realistically evaluate network impacts and bound uncertainty across a 

variety of alternative scenarios prior to investing in large transportation infrastructure projects 

with long service lives. Out of this need to capture realistic travel behavior patterns, a travel 

behavior research community has emerged that focuses on broad activities that includes real-

time decision making at the micro-level (e.g., individual travel choices, multimodal trip chaining) 

all the way to long-term planning choices (e.g., where to live/work depending on available 

transportation options). To provide specific AMS examples, agent/activity-based methods are at 

the micro-level because they model decisions at the individual/household/tour level, whereas 

traditional four-step models are at the macro-level because they capture aggregate behaviors at 

the level of a traffic analysis zone across larger regions. Micro-level AMS tools are used to 

evaluate outcomes at high resolution in time and space (e.g., tactical/operational decisions). 

Macro-level AMS tools evaluate regional outcomes across long time horizons (e.g., strategic 

decisions, long-term planning). Travel behaviors, such as route choice, destination choice, 

departure time, parking decisions, etc., which are required for traffic simulation tasks, fall 

somewhere in-between micro- and macro-level modeling. This analysis focuses on these 

behavior changes resulting from the convergence of three mega trends. More specifically, what 

are the impacts of automation, connectivity, and electrification on the standard sequence of 

travel choices that one typically goes through starting with the decision to make a trip and 
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ending with choices that happen at the trip destination, such as parking location. Other 

decisions include mode, destination, departure time, trip cancelation, and route choices.  

The rapid development and deployment of automation technologies (e.g., Tesla Autopilot, 

Waymo, Cruise), connectivity through real-time travel applications/services (e.g., Google Maps, 

Waze, public transit apps, traveler information messages), and affordable electric vehicles (EV) 

enabled by steep declines in battery production costs (82% decline in battery price in the last 10 

years [1]) are impacting travel behavior in diverse ways. These emerging trends coupled with a 

constantly evolving technology, policy, and infrastructure landscape are creating challenges for 

the AMS community to accurately capture shifting travel behaviors. This analysis aims to 

address these challenges by connecting technology characteristics to factors affecting traveler 

choices both in isolation and in realistic environments where new technologies and services 

coexist. Gaps in current AMS tools will be identified and potential strategies to integrate new 

methods to capture shifting travel behavior will also be discussed. Specific high-level questions 

this paper aims to address are as follows: 

• What are the travel behavior impacts resulting from automation, connectivity, and vehicle 
electrification? 

• What are some potential synergies and conflicts between emerging technologies that could 
alter travel behavior? 

• What are the gaps/challenges related to representing travel behavioral shifts in current AMS 
tools?  

1.2 Emerging Technologies in Transportation 

1.2.1 Connectivity 

In the context of this analysis, connectivity refers to digital communications between devices, 

systems, vehicles, and infrastructure. Vehicle connectivity refers to vehicles that can send 

and/or receiving data via wireless communications. These technologies enable communication 

between the vehicle and other vehicles (V2V), infrastructure (V2I), and everything else (V2X). 

Traveler connectivity technologies are tools, devices, or platforms that are used to improve an 

individual’s (or group’s) overall travel experience. Examples of such technologies are mobile 

applications and traveler information services that provide real-time information (e.g., Google 

Maps, Waze, public transit apps) or access to new services (e.g., Uber/Lyft, micro-mobility, bike 

share). Vehicle connectivity technologies primarily focus on safety and operational efficiency 

while traveler connectivity technologies aim to improve traveler experience through information 

provision. Based on these primary objectives, it is anticipated that larger-scale travel behavior 

change will be due to traveler connectivity enhancements, and for this reason, traveler 

connectivity technologies are the focus of this study. 
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Traveler connectivity is not a new concept. The earliest examples date back to the 1930’s with 

the in-car radio designed to provide traffic reports to the driver [2]. Other communications 

technologies, such as OnStar and electronic toll collection, have incrementally enhanced 

traveler experiences throughout the years. However, the introduction of modern smartphones 

and Wi-Fi-enabled vehicles in 2007 and 2008, respectively, have changed the landscape in 

terms of traveler connectivity for several reasons. First, smartphones are equipped with GPS 

that enabled a massive new source of speed and travel time data. In addition, GPS is necessary 

for new mobility service models that rely on real-time locations of travelers and vehicles for 

assignment and routing. Second, the proliferation of smartphones and the ease of integrating 

new platforms/services has resulted in smartphones becoming the default platform for 

disseminating detailed and tailored navigational support (Google Maps) and travel information 

(multi-modal / public transit apps). The growing use of smartphones and innovations to data 

collection, processing, and optimization has led to numerous individual benefits in terms of 

travel time reductions, improved reliability, and access to new mobility services. However, at the 

same time, numerous societal costs have also been observed due to unforeseen behavioral 

shifts (e.g., mode shift from public transit to Uber/Lyft leading to increased congestion [3], 

misuse of existing transportation infrastructure [4]). 

1.2.2 Automated Vehicles 

Concepts and pioneering research into automated vehicle (AV) technologies began in the early 

1900’s and continued through the end of the century. However, the automated vehicle grand 

challenges initiated by the Defense Advanced Research Projects Agency in 2004 and 2007, 

respectively, spearheaded commercial interest by showcasing what can be possible with vehicle 

automation technologies. The combination of new commercial interest (and investment) and 

advancements in key enabling technologies (e.g., sensors, software, computation) has pushed 

forward AV development in the last decade to a point where AVs are now commercially 

operating on U.S. roadways [5], [6]. 

Six levels of vehicle automation are defined by the Society of Automotive Engineers (Level 0 – 

Level 5) [7]. Level 0 – Level 2 refers to lower levels of automation, such as driver assistance 

and partial automation. High vehicle automation (Levels 3-5) refers to situations when the 

vehicle can be in full control of driving tasks in the appropriate operational setting. In terms of 

macro-level travel behavior, high automation is likely to cause the biggest shifts due to its ability 

to significantly change an individual’s travel cost function. Therefore, highly automated vehicles 

are the focus of this analysis due to their potential to cause widespread behavioral change. 

Finally, behavioral change from AVs is largely dependent on the service model. Currently, two 

primary models exist: privately owned vehicle model and shared use model. To date, the most 

advanced systems are being operated as shared, ridehailing services (Waymo, Cruise), which 

can facilitate safer, more affordable on-demand mobility service. The private ownership model 

(e.g., Tesla Autopilot) can also provide numerous individual benefits with potentially higher costs 

to society due to increased vehicle miles traveled (VMT) [8]. This analysis addresses both 

models to determine potential implications if either (or both) take hold. 
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1.2.3 Electric Vehicles 

The race to decarbonize the transportation sector (which is currently the highest greenhouse 

gas (GHG) emitting economic sector accounting for 1/3 of total U.S. emissions [9]) has led to 

large investments in EV technology. These investments have paid off as battery costs have 

come down 82% in the last ten years ($780/kWh in 2013 to $139/kWh in 2023) [1]. These steep 

reductions in battery costs coupled with numerous federal, state, and local incentives have led 

to exponential growth in EV sales increasing from 0.7 million to 13.7 million between 2016-2023 

[10]. The rapid adoption of new power train technologies can have significant impacts on travel 

behavior as new factors must be considered prior to making a trip (e.g., battery range, state of 

charge, access to charging). While these factors will likely evolve with improvements in battery 

range and charging infrastructure, the physical constraints posed by the electric grid (e.g., 

location, capacity) will continue to limit fueling flexibility for the foreseeable future.  

For the purposes of this analysis, privately owned EVs are the focus. Other modes are also 

transitioning from internal combustion engines (ICE) to electric motors (public transit, micro-

mobility); however, the fuel type alone is not likely to produce large shifts in travel behavior 

unless traveler costs can be drastically reduced. From a behavioral perspective, EVs serve as a 

clean-fuel replacement for ICE. Therefore, travel behavior change caused by EVs will be closely 

tied to their new benefits and constraints compared to their ICE counterparts. For example, 

battery range and availability of charging infrastructure are new constraints an EV owner must 

consider when making travel choices, which will alter their travel behavior compared to ICE 

vehicles.  

Figure 1 presents key milestones for connectivity, automated vehicles, and electric vehicles 

over the last 15 years. Notice the rapid technology development and deployments during recent 

years, and how the different technologies are all expected to reach widespread deployment in 

the near-term. Therefore, there is an urgent need to improve AMS capabilities to capture these 

emerging trends.
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     Source: ITS JPO 

Figure 1. Important Milestones and Deployment Timeline for AVs, EVs, and Traveler Connectivity Technologies 
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1.3 Travel Behavior Modeling 

Travel behavior modeling is an approach used to estimate and forecast travel choices and their 

resulting network impacts using mathematical and statistical models. These models can then be 

used to evaluate various planning and operational designs quickly and cost-effectively to help 

inform policy, planning, and infrastructure investments. The field of travel behavior modeling is 

broad and consists of a series of modeling approaches developed to answer specific questions 

from intersection signal timing to long-range regional planning. The specific behavioral impacts 

of interest for this study are related to the sequence of choices an individual (or group) must 

make to initiate/complete a trip: 1) whether to make a trip or not, 2) destination choice, 3) mode 

choice, 4) route choice, 5) departure time, 6) trip cancellation/abandonment, and 7) parking 

decisions. This sequence of choices can then be integrated with the appropriate AMS tools 

(e.g., mesoscopic, macroscopic) to study macro-level behavior change and resulting network 

impacts.  

The challenge with analyzing travel behavior change from emerging technologies is the lack of 

real-world deployments/data. However, data collected from surveys can help forecast behavioral 

shifts based on how the new technology or service impacts factors that influence travel choices. 

Many factors impact travel decisions that include socioeconomics, demographics, 

residential/work locations, etc., however, the focus of this analysis will be based on factors that 

affect the generalized travel cost function: 1) travel time and 2) monetary cost for travel (parking, 

fuel, tolls, fares, etc.). Reliability, convenience, vehicle ownership, and other factors that impact 

travel choices will also be discussed in terms of high-level impacts resulting from the three 

mega-trends. 

To summarize, the convergence of three technology mega-trends (automation, connectivity, and 

electrification) are expected to disrupt the transportation sector in the coming years. At this 

point, is it unclear how these technologies will impact travel behavior, and if such travel behavior 

shifts are net positive or net negative. This analysis begins to address these questions at a high 

level by gathering relevant studies and comparing technologies to best understand how the 

different technologies will interact, and what roles they will play in modern transportation 

systems. Based on initial findings, new questions will also be posed to guide future research 

focused on travel behavior shifts resulting from mega-trend technologies. Finally, network level 

impacts and methods to integrate new shifting behaviors into existing AMS tools will also be 

discussed. 

1.4 Purpose 

The purpose of this document is to identify potential impacts from AVs, connectivity, and EVs as 

they relate to travel behavior to update, integrate, and operationalize AMS tools. The 

overarching goal is to improve accuracy and reduce uncertainty for AMS tools when modeling 

the coming together of three mega-trends. 
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1.5 Scope of Document 

The primary focus is at the vehicle and/or traveler level. More specifically, how will AVs, traveler 

connectivity, and EVs impact individual decision making. Potential synergies and conflicts 

between the various technologies will also be discussed. Future research directions will be 

identified based on a review of relevant literature related to the integration of shifting travel 

behaviors with currently available AMS tools. 

1.6 Report Organization 

The remainder of this white paper is organized as follows: 
• Chapter 2 presents a summary of the literature review of existing studies focused on travel 

behavioral change from automation, connectivity, and electric vehicles. 

• Chapter 3 discusses potential relationships (complementary / competitive) between 
automation, connectivity, and electrification based on findings from Chapter 2. 

• Chapter 4 summarizes modeling gaps/challenges and discusses various ways to integrate 
and operationalize behavioral shifts with current AMS tools. 

• Chapter 5 summarizes the conclusions, including responses to important research 
questions posed, and identifies future research directions. 
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2 Literature Review 

This chapter presents an overview of findings related to travel behavior shifts resulting from 

traveler connectivity technologies, AVs, and EVs. The various methods and approaches used to 

model and simulate emerging technologies will also be discussed. The chapter will conclude 

with key findings and gaps/challenges. 

2.1 Travel Behavior Impacts 

2.1.1 Traveler Connectivity 

The smart phone has changed the way traveler’s make choices. Since its introduction in 2007, 

numerous mobility applications have been developed to improve the traveler experience. 

Generally, the various applications can be divided into two groups: 1) traveler information and 2) 

mobility services. Traveler information apps equip travelers with data to inform decision making 

(e.g., Google Maps, Waze). More information leads to more rational decisions and improved 

individual benefits. Information apps can be real-time (e.g., traffic congestion along route) or 

offline (e.g., multimodal planning based on timetables). Service apps, on the other hand, are 

new modes and services enabled by smartphone connectivity. Ridehailing (e.g., Uber/Lyft) and 

other micro-mobility services (e.g., bikeshare, shared scooters) are two service models made 

possible by smartphone connectivity that have shifted travel behavior resulting in significant 

network disruption over the last decade [3], [11], [12]. The following section will focus primarily 

on these two groupings of traveler connectivity apps, and how access to information and new 

services have impacted travel behavior. 

Travel decisions informed by real-time information are largely en-route decisions, such as route 

choice, trip abandonment, and parking decisions. Factors affecting these decisions are 

delays/congestion, incidents, weather, and parking supply/cost. Prior to this information being 

made available through connectivity, travelers would continue taking their “best” routes that 

were learned through experience, which might not always be user optimal. Therefore, real-time 

information can help increase individual benefits and enable more rational behavior. Evidence of 

improved decision making was found in several studies dating back to traffic reports in the early 

1990’s. One study found that commuters were more likely to change their route choices and 

departure times to minimize travel costs after listening to traffic reports if their route was 

congested [13]. A different study found that travelers’ route choice behavior was more rational 

when real-time information was presented through dynamic message boards [14]. Improved 

rationality leads to more predictive behavior, which is consistent with how current AMS tools 

model route choice behavior. However, improved individual decision making doesn’t always lead 

to positive outcomes and can create new modeling challenges based on new traveler-
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infrastructure interactions. For example, one study found that while digital navigation increased 

the usable capacity of the road network by diverting traffic to lesser-used roads, many of the 

roads were not being used as intended. For example, local traffic was now using motorways 

designed for long-distance travel (adding to congestion) and long-distance travelers were now 

using local roadways not intended for high traffic volumes (increasing negative environmental 

impacts) [15]. This behavior was corroborated by other studies in London and California [15], 

[16]. These observations were occurring because travel information providers (Google Maps, 

Waze, etc.) work in isolation (not with local transportation officials) and provide “selfish” routing 

recommendations. Simple heuristics are also used to make recommendations in real time, 

which require roads to be broken down into a few simple classes with no local contextual 

information. Finally, acceptance of routing recommendations is extremely high among app users 

(~75% follow recommendations more than 80% of the time [17]). These simplifications of the 

road network and high compliance among app users creates numerous problems for city traffic 

officials as they can no longer manage traffic as intended, often leading to increased congestion 

and traffic accidents (e.g., school zones, difficult to cross intersections, difficult roads with steep 

grades and blind spots, truck rerouting along on roads without appropriate accommodations, 

e.g., bridge clearances, sharp turns, steep grades) [4]. These observed trends can also 

increase overall network delays when large numbers of travelers divert to smaller roads 

instantaneously (assuming recommendations are provided based on real-time data, i.e., no 

predictions), which can create unexpected queues due to the recommended route’s inability to 

accommodate the sharp increase in demand [18]. From the user benefits perspective, several 

studies found that travelers place high value on reducing travel time uncertainty. [15] concluded 

that the biggest benefit from digital navigation was its ability to reduce travel time uncertainty, 

while [14] found that travelers with sufficient experience between specific OD pairs tend to shift 

from the lowest expected travel time routes with high variation to more reliable routes. Finally, 

from the parking perspective, several studies observed reduced circling for parking when 

information was available [19], [20]. [20] found that travelers behaved more rationally (in a cost-

minimizing fashion) when parking information (cost, availability) was provided, and time 

flexibility was considered. To conclude, the types of travel behavior shifts that can be anticipated 

from real-time traffic information vary based on what is important to the user and how the 

information is presented. When all information is presented and travelers have time to make 

choices between alternatives, individuals tend to be more rational. Real-time traffic apps can 

also reduce travel uncertainty, which is an important factor for travelers making choices about 

whether to take the trip or not, departure time, and route choice. Finally, recommendation 

systems play an enormous role in en-route travel behavior, especially when the traveler is 

unfamiliar with the region. 

Travel decisions informed by offline information are often pre-departure decisions, such as 

mode choice, departure time, and other trip planning decisions. Multimodal planning and transit 

apps are primary examples. The research in this area is limited, however, [21] used a survey of 

3,000 multi-modal app users to find that 38% of users drove less, 1/3 of respondents increased 

their use of alternative modes, and half of the respondents reduced their wait times. Improved 

access to information will improve reliability and reduce travel costs for alternative modes, which 
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will likely cause mode shift in regions where robust alternative services exist and costs to own 

private vehicles is high. 

Finally, the rise of service-based apps enabled by connectivity has grown rapidly since Uber and 

Lyft began offering rides in 2010 and 2012, respectively. Also included in this category are all 

bike share and micro-mobility systems that require a mobile app to lock/unlock devices, pay for 

services, and locate devices. The improved convenience of such technology-enabled services 

has led to rapid growth in the use of these services. In 2019, 36% of U.S. adults reported using 

ridehailing services, which was up from 15% in 2015 [22]. In 2022, 113 million trips were taken 

by e-scooter and bike share systems, up from 320k in 2010 [23]. These numbers indicate a 

mode shift and/or induced demand that should be considered for planning purposes, especially 

as younger, more tech savvy generations reach working age. However, more importantly are the 

sheer number of new fleet vehicles on U.S. roadways. In New York City alone, Uber operates a 

fleet of 80,000 vehicles compared to only 13,000 taxis [24]. From a traffic perspective, large 

fleets of on-demand vehicles (ridehailing, delivery, etc.) will impact network performance in 

unforeseen ways because fleet vehicles behave differently compared to individual drivers. First, 

fleets are centrally coordinated and profit maximizing during assignment. This behavior was 

found to increase system costs at low fleet penetration rates [25]. Next, a different set of 

behaviors is exhibited between trips (deadheading) in search for demand, which can be further 

influenced by policies, pricing, and/or regulation [26], [27], [28]. Finally, parking is no longer a 

consideration, which can reduce circling but can also create congestion at pickup/drop-off 

locations. [3] found that average pickup/drop-off times for ridehailing services in San Francisco 

to be 1 minute, significantly impacting local congestion. 

2.1.2 Automated Vehicles 

Numerous automation technologies exist within the transportation ecosystem; however, highly 

and fully automated vehicles (defined by SAE as L4-L5) are the focus of this study because they 

can facilitate widespread behavioral change. However, it is worth noting that numerous hands-

free automation systems are being developed and deployed by different manufacturers that 

could impact travel behaviors. For example, General Motors (GM) recently extended their 

hands-free Super Cruise (SAE L2) network to 750,000 miles (in the U.S.) based on pre-mapped 

roads that have been approved for use by GM [29]. Other manufactures have taken similar 

approaches (e.g., Ford BlueCruise [30], Nissan Pro-PILOT 2.0 [31]) with SAE L2 capabilities 

using pre-mapped roads. Recently, Mercedez-Benz received approval for Drive Pilot (SAE L3) 

to operate in Nevada and California when speeds are below 40 mph [32]. A few studies have 

considered/analyzed different travel behaviors based on different levels of automation. For 

example, [33] assumed a 5% reduction in travel costs for SAE L2 systems and 50-80% 

reduction in travel costs for SAE L3-L4 systems. A different study used a driving simulator for 

both SAE L3 and SAE L4 features and stated preference surveys to find that drivers were willing 

to spend 30-50% longer traveling if they did not need to drive the whole trip themselves [34]. 

This finding would indicate that drivers of vehicles with SAE L2-L4 features would likely deviate 

from their normal route (up to a point) to access pre-mapped corridors or other operational 

design domains defined by the automation feature. Due to recent technology deployments and 
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limited data on the subject, travel behavior change resulting from SAE L2-L4 systems is not well 

understood, indicating an important area for future research. For highly/fully automated systems 

(the primary focus of this paper), there tends to be two general pathways for AV adoption / 

deployment: 1) private ownership model and 2) shared services model. The pathway that 

dominates will also govern the resulting travel behavior changes. This literature review 

investigates both pathways to capture all potential scenarios that could unfold.  

The most agreed upon finding in the literature is that the value of travel time (VOTT) decreases 

when traveling in an AV because travelers can now use their time to do other tasks (working, 

reading, etc.). This assumption is supported by several studies and is consistent for both private 

and shared models. However, the reduced VOTT was only observed for work travel/commutes 

and long-distance travel [35], [36]. Estimates of VOTT reductions were between 20-50% [37]. 

These findings indicate that if vehicles are designed to accommodate work tasks during 

commutes, then the reduction in VOTT could increase peak hour congestion because individual 

travel time costs decrease while departure time penalties remain unchanged. This results in 

travelers being less sensitive to delays when making travel decisions. Along these same lines, 

the ability to multi-task (or sleep) during longer distance travel is a clear advantage for AVs. This 

idea has led to several studies estimating rather large mode shifts between short-haul flights to 

AVs for trips between 100-500 miles [37], [38]. 

AVs can also decrease travel costs by reducing/eliminating parking costs. Traditionally, parking 

costs in downtown central business districts are high to help balance supply and demand. The 

parking choice for individual drivers come down to the monetary cost of parking versus walking 

time tradeoff. This tradeoff is different for AVs depending on the how long the traveler plans to 

spend at the destination. For short duration trips, travelers prefer wait times less than 10 

minutes, which means that the access/egress costs can be relaxed because AVs are much 

faster than walking. For longer duration trips, the parking location decision is simply a cost 

minimization problem (operational + parking)  because access time is no longer an issue [39]. 

Finally, trip termination for AVs is more like a ridehailing service, in that passengers can be 

picked up and dropped off anywhere. This represents a behavioral shift as to how curb space is 

used, which can result in harmful impacts if not considered in planning and operational designs. 

The combination of reduced travel time costs (i.e., lower VOTT) and reduced monetary costs 

compared to human driven vehicles (e.g., reduction in parking costs, improved driving 

efficiency) will likely result in increased mode share for AVs at the expense of alternative modes. 

Several studies have found that public transit mode share will likely decrease with greater 

access to highly and/or fully automated vehicles (SAE L4-L5) due to reduced travel time 

disutility and lower operational costs provided by autonomous vehicles [40], [41], [42]. However, 

this shift will depend on access and efficiency of nearby public transit and travelers’ willingness 

to use AVs [43], [44]. 

Perhaps the biggest uncertainty related to AV behavior is related to zero-occupancy trips. The 

ability for AVs to travel throughout the network without a driver fundamentally changes how 

people and vehicles interact with the transportation system. When a person is in the AV, travel 
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choices will be similar to conventional vehicles (balancing travel costs, travel time, reliability, 

etc.) with marginal shifts due to reductions in VOTT. However, when an AV is traveling without a 

driver, these costs and objectives change. For example, the travel time component of cost 

becomes irrelevant, and autonomous vehicles will simply look to minimize operational/parking 

costs. The unfortunate fact about the operational cost minimization strategy is that traveling at 

slower speeds is the most cost effective solution, thus incentivizing congestion [45]. In the case 

of parking, AVs will select the parking locations where the summation of operational costs and 

parking fares are minimized. In many cases, this might result in AVs returning home for free 

parking and doubling vehicle miles traveled (VMT) [8], [46]. An alternative optimal solution for 

dense urban cores might be for AVs to simply cruise, as operational costs can often be cheaper 

than sending the vehicle home or paying for parking [45]. The key takeaway here is that VMT is 

expected to increase with AVs and a significant portion of induced VMT will likely be in the zero-

occupancy state. One previous study using a chauffeur to simulate AV travel behavior found that 

VMT increased by 85% with 21% of the increase coming from zero occupancy trips [47]. These 

zero occupancy vehicles move about the network and make decisions based on a very different 

cost function compared to conventional vehicles, which can negatively impact network efficiency 

without the appropriate policies in place (e.g., congestion pricing).  

Shifting to the shared autonomous vehicle (SAV) model, which can be thought of as a shared 

fleet of AVs that operates like a ridehailing or on-demand public transit service. According to 

several studies, SAVs can reduce car ownership, reduce waiting time and trip costs compared 

to traditional public transit, are more efficient (serve demand with smaller fleets), improve 

accessibility for non-driving populations, among many others [48]. One reason why there is so 

much interest around shared automated services is that eliminating driver costs (accounting for 

up to 70% of expenses in public transit systems) can drastically reduce operational costs and 

resulting affordability. One study estimated that shared, autonomous ridehailing could be 10-

40% cheaper per mile compared to private conventional vehicles in the next decade. Compared 

to traditional ridehailing, fully autonomous fleets can reduce mobility costs by 70-80% [49]. If 

technology developments continue to progress and cost reductions are realized, significant 

growth in the use of these services is anticipated. From a modeling perspective, large, centrally 

operated vehicle fleets behave and interact differently with existing infrastructure and other 

network users. Fleet optimal algorithms will be used to advance operator objectives (likely profit 

maximizing objectives). Empty vehicle miles between drop-offs and subsequent pickups (also 

known as deadheading) will be unpredictable and based on private demand data collected by 

the operator. Finally, interactions with the curb will drastically change as on-street parking will be 

less in demand and pickup/drop-off zones will be needed to remove vehicles from traffic 

streams to prevent congestion. 

A large shift towards greater use of SAVs was also found to reduce mode share for both private 

vehicles and public transit due to low operational costs and reduction in VOTT [40], [50]. 

However, it is difficult to determine if the net effects of mode shift towards SAVs are positive or 

negative from congestion and VMT perspectives without a more detailed analysis that considers 

local conditions, built environment, and travel behaviors. 
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AVs will also provide mobility services to new, non-driving populations (e.g., elderly, disabled, 

youth), which by some estimates, can increase vehicle miles traveled (VMT) by 14% for the 

adult population [51]. A deeper understanding related to travel behaviors associated with such 

populations is needed to accurately model and simulate behavior change resulting new traveler 

types. 

Finally, it is worth mentioning that AVs exhibit programmed behavior, which can be very different 

than driver behavior. A conservative driving style that is fully compliant to all rules and 

regulations could impact network efficiency when coupled with other potential AV behaviors. For 

example, selecting low-speed local routes to minimize travel costs might present problems due 

to higher-than-normal pedestrian traffic (e.g., multiple crosswalks present through a school 

zone). The lack of social cues in such scenarios can drastically slow travel and create 

unnecessary congestion. 

2.1.3 Electric Vehicles 

The transportation sector accounts for 1/3 of total U.S. emissions, of which, light duty vehicles 

contribute to 49% [9]. To combat the growing impacts of climate change, the transportation 

sector will need to leverage a variety of technologies and strategies to promote more 

sustainable travel. The transition from ICE to EV vehicles is one of the most important 

components for most decarbonization strategies. At the same time, EVs have a different set of 

constraints compared to ICE vehicles that travelers must learn and consider when making travel 

choices. This section focuses on these choices, and how travel behavior might change as the 

light-duty fleet electrifies. 

First, it is important to remember that EVs serve as a replacement for ICE vehicles. The main 

differences between the two are that EVs have more efficient power trains and are powered with 

electricity. This translates to lower energy costs (70% reduction in energy costs for EVs 

compared to ICE vehicles [52]) but more complex decision making due to new constraints 

around battery range, reliability, and access to charging infrastructure. The consistent finding 

from the literature is that most day-to-day travel choices will be directly impacted by battery and 

charging conditions. One study found that state of charge (SOC) at the origin is the most 

important factor for deciding to charge while estimated SOC at the destination was the most 

influential factor for route choice decisions. Additionally, when en-route charging was required, 

travelers tended to choose routes with charging close to the origin with minimal wait/charging 

times [53]. A different study found that in addition to SOC at origin and destination, the presence 

of charging at the destination, charger types, and charging wait times also impact route choice 

[54]. Findings also suggest that when SOC at the destination is low, travelers choose local 

streets with slower speeds to reduce energy consumption. If charging is required, travelers 

prefer arterials with access to fast charging [54]. Finally, from a departure time perspective, one 

study points out that EVs can increase peak-period congestion by not altering their departure 

time. Congestion related costs for EV drivers are expected to be lower due to improvements in 

energy efficiency at low speeds. In some cases, the added congestion costs are lower than 

penalties incurred by departing early or late [55]. Other research has also shown that reduced 
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fuel costs are likely to lead to increased trips [56], [57], [58] when battery range is not an issue. 

However, trip cancelation / abandonment rates are also expected to increase when estimated 

SOC at the destination is low [59]. Range reliability is also an issue affecting trip taking 

behavior, as EVs range can vary significantly based on travel speed, road grade, driving 

behavior, and temperature [59]. The key takeaway from this section is that trip choice and 

destination are both highly dependent on SOC. Departure time to avoid congestion might also 

be impacted due lower energy costs while in congested conditions. For EVs in general, the 

generalized cost function for route choice becomes more complex because travelers must now 

consider battery SOC and charging access in addition to travel time and cost. Parking choices 

are also impacted when SOC is low at the destination. 

The rapid adoption of EVs might also impact travel behaviors for ICE vehicle owners. According 

to a report by Boston Consulting Group, 25-80% of the fuel market could be unprofitable in the 

next 15 years due to EV adoption and the increased use of mobility-on-demand [60]. If gas 

stations plan to accommodate both EVs and ICEs, they will need to relocate to areas with more 

land to provide services for longer durations (lower turnover with EVs), which will impact area 

travel behaviors as gas stations relocate from urban to suburban locations. This transition will 

also have equity implications as smaller urban gas stations (without room to expand) will likely 

be the first to close, resulting in decreased access and longer travel times for urban ICE owners. 

The most likely gas stations to survive this transition are ones that diversify their offerings and 

accommodate EV charging, which in many cases, will be based in areas with favorable utility 

rate structures [61] and outside of affluent, urban neighborhoods where home charging is an 

option [62]. In scenarios where access to gas stations becomes increasingly difficult (affluent, 

urban neighborhoods), ICE owners will likely have to alter travel behaviors or have their fuel 

delivered [63]. 

EV drivers also exhibit different driving behaviors compared to the general population. One 

study surveyed 350 EV owners in the United States and found that EV drivers exhibited calmer 

driving behavior and were more likely to engage in more fuel-efficient driving habits, such as trip 

chaining and taking eco-routes [64]. At the same time, a rebound effect has also been observed, 

as EV owners perceived EV travel as significantly more environmentally friendly than public 

transit, leading to an increase in private vehicle trips [65]. In addition, eco-routing behaviors may 

also increase total system costs due to delays and increased congestion in a mixed traffic 

environment as EVs owners may seek out stop-and-go traffic to save energy thus causing more 

congestion for all network users, including ICE vehicles. 

2.2 Modeling Methods 

A rich literature exists related to the integration of AV, vehicle and traveler connectivity, and EV 

driving behavior into micro-simulation models. However, less attention has been paid to 

modeling macro-level behavioral shifts, which is the focus of the following section. 
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2.2.1 Traveler Connectivity 

The three primary areas of interest identified from the literature review related to connectivity 

technologies were behavioral response to real-time travel info (e.g., digital navigation apps, 

such as Google Maps or Waze), behavioral shifts due to greater access to multimodal 

information (both real-time and offline), and the potential widespread adoption of fleet-based 

services enabled by connectivity technologies (Uber, eScooters, bikeshare, etc.). For fleet-

based services, the shifts in “behavior” are due to new types of vehicles and services interacting 

with the network in new ways. 

First, from a real-time information perspective, several studies have identified a shift towards 

more rational decision making when real-time information was provided [14], [66], [67]. Different 

studies have modeled this behavior by assuming travelers will select the route with the lowest 

expected travel time based on real-time network conditions. This choice is presented at each 

time step to model en-route behavior [18], [68]. [18] found that providing real-time information to 

a small portion of travelers resulting in improved network performance. No real-time information 

led to higher congestion on freeways and major arterials. Providing real-time information to a 

high percentage of travelers caused more intensive use of smaller roads with bottlenecks, which 

also increased total network delays. This is because large numbers of travelers may all decide 

to use the instantaneous optimal route, which may lead to unexpected queues on routes not 

designed to accommodate all of the diverted travelers. [68] observed similar results for parallel 

networks (providing real-time information to only 30% of travelers was optimal). However, 

network performance improved as a function of the proportion of travelers provided with real-

time information for grid and ring networks. Other studies have found oscillatory behavior 

amongst rational travelers when provided real-time information on simplified networks [66], [69], 

[70]. This behavior was due to the time lag between providing shortest path route 

recommendations to drivers and the subsequent congestion caused by more drivers using the 

recommended route. The current route then becomes the shortest path due to fewer drivers, 

which will now become the recommended route resulting in an oscillating pattern of congestion. 

This pattern has been shown on theoretical, simplified networks, however, further research is 

needed to understand how real-time information impacts actual drivers on real-world networks.   

Next, from a multimodal perspective, access to transportation planning apps and real time 

transit information leads to improved performance of alternative modes. For example, when 

using a multimodal/transit app, wait times were reduced, thus lowering the total cost of the trip 

[21], [71]. Research studies were not identified that specifically modeled travel behavior 

response from improved access to multimodal information. However, multimodal travel behavior 

has been extensively studied and can be integrated into traditional travel demand models using 

behavior choice studies. Based on previous research, correlation was found between 

smartphone use (and transportation app use) and greater probabilities to use alternative modes. 

One study found that millennials (who were also found to use smartphone apps at increased 

rates) were three times more likely to use Uber or Lyft and five times more likely to take a 

shuttle to work or school compared to Generation X respondents [72]. Modeling frameworks for 

multimodal travel have been developed for research applications, however, emerging modes 
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(ridehailing, scooters, bikeshare, etc.) are often not considered [73], [74]. The current method of 

choice for capturing mode shift to alternative modes (or multimodal travel) is to use agent-based 

models (ABM). ABMs are flexible modeling frameworks that simulate actions and interactions at 

the individual-level based on a set of predefined rules/behaviors. Using this framework, 

heterogeneous behaviors can be modeled in the multi-modal context that includes emerging 

modes. ABMs are extremely flexible and different modeling approaches exist, however, the 

general approach for transportation ABMs begins with tour assignment (based on area activity 

patterns) using empirical data and discrete choice models. A simulation step then follows that 

assigns traveler tours to specific routes. Finally, a replanning phase is initiated to allow 

individuals to make alternative plans based on utility maximization. These steps are repeated 

until population utilities stabilize [75]. This framework allows for easy integration of alternative 

modes based on how each mode impacts an individual’s utility. 

Lastly, and perhaps the most impactful, are travel behavior shifts due to emerging services and 

technologies enabled by connectivity. Modeling efforts that consider the different objectives 

(fleet optimal versus user optimal) have been conducted in research using mixed-traffic 

equilibrium, where both fleet vehicles and private vehicles must reach fleet optimal and user 

optimal conditions, respectively [25], [76]. However, deadheading and queueing created during 

pickup/drop-off were not considered. A different study used optimal control theory to 

characterize ridehailing dynamics including the deadheading portion of the trip [77]. However, 

other traffic was not considered. Finally, different modeling methods have been developed to 

analyze impacts from the pickup/drop-off portion of the trip. [78] used ABMs and constrained 

pickup/drop-off zones to parking areas (both on-street and off-street) where the probability of 

available parking supply was high based on parking data. [79] developed a bi-modal equilibrium 

model with a queueing component to capture network impacts of ridehailing pickup and drop-off. 

2.2.2 Automated Vehicles 

From the private ownership perspective, highly automated vehicles can significantly impact 

network efficiency by reducing VOTT for travelers and through zero occupancy travel. From a 

shared service model perspective, automation can enable affordable new mobility services 

(e.g., ridehailing, on-demand transit) that can impact network performance through new fleet-

based objectives, added VMT from deadheading, and new interactions with the curb. Numerous 

studies have developed different ways to model these behavioral changes, however, no studies 

have modeled automation impacts in aggregate to gather realistic insights. 

First, the general approach to modeling AV travel, for both private and shared models, is to 

reduce VOTT and operational cost parameters and simulate travel outcomes [40]. To evaluate 

resulting impacts, activity- and agent-based models were most often used due to their flexibility 

to consider new modes and behaviors. The general approach to represent AVs in macroscopic 

models was to modify demand (e.g., passenger car unit factors) and/or supply based on 

reduced headways between AVs [80], [81]. For travel demand models, new AV modes (private, 

ridesharing) can be easily integrated into the mode choice step by adding an AV option to the 

choice set with modified cost and travel time parameters [80]. Modifications to VOTT and travel 
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costs were also used to represent long-distance AV travel compared to conventional driving, air, 

and rail travel [82], [83]. 

Next, one large difference between conventional driving and AV travel is related to what 

happens before and after the trip when vehicles are in a zero-occupancy state. Several studies 

have looked at this from a parking choice perspective. The most common approach is to select 

a parking location based on total cost minimization (operational, tolls, parking fares). [84] used 

an ABM to model parking choices based on minimizing parking and driving costs in Seattle and 

found that VMT increased between 5.6-13.5km per day with AVs. A different approach was also 

developed to consider both trip segments (origin → destination + destination → parking) to more 

accurately represent AV travel and quantify resulting impacts [85]. The parking location was 

assumed to be known a priori based on minimizing costs between the destination and final 

parking spot. The total travel cost can then be calculated based on both trip segments and 

represented in a network equilibrium model [85]. [45] used similar travel cost functions to 

determine parking locations (free on-street parking or returning home). In addition, SUMO 

modeling software [86] was used and cruising behaviors were modified to seek the most 

congested routes to minimize cruising costs. Based on demand data in San Francisco, the 

study found that cruising was the cheapest option for 37% of the trips for ICE vehicles and 

39.9% of trips for EVs [45]. Modeling parking decisions—which is one motivation for zero-

occupancy travel—is a well-researched topic area that comes down to minimizing monetary 

costs of travel and parking fares. However, other zero-occupancy behaviors are likely to arise 

(e.g., errands, delivery, picking up friends/family [47]), which can have significant impacts on 

network conditions. Modeling these situations and designing appropriate interventions will be 

integral in managing future traffic networks with highly/fully automated vehicles.  

From a shared use perspective, the most common modeling approaches use ABMs and modify 

travel cost parameters to represent private and shared AVs in the network. One study used 

MATSim [75] and reduced cost parameters for private and shared AVs to capture mode choice 

decisions and subsequent operational impacts when traversing through the network [87]. 

Shared AVs must also include disutility factors for sharing rides with others and wait/detour 

times. Other modeling considerations (fleet-optimal decision making, deadheading, and curb 

interactions) are similar to those of ridehailing fleets discussed above. The primary difference 

between the two services (ridehailing with drivers versus ridehailing with AVs) is related to 

expected costs of travel and deadheading behaviors. Lower costs for AV-based services are 

expected, which will likely facilitate a more rapid modal shift. Cruising behaviors between 

passengers will also likely be different. AV services will likely reposition based on historical data 

and fleet optimal decisions. Driver-based ridehailing behavior will be based on driver 

experience. 

2.2.3 Electric Vehicles 

The key finding from the literature was that EV drivers must consider new constraints when 

making travel decisions due to technology limitations and lack of a convenient and reliable 

charging network. Important factors such are SOC at the origin and destination, locations of 
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different types of charging infrastructure, and routing decisions to conserve energy when the 

cost of en-route charging is high (detours, wait time, monetary cost, etc.) must all be considered 

in addition to travel time and cost.  

From a modeling perspective, battery range constraints and charging decisions can alter the 

way EV drivers utilize the transportation network. To capture range anxiety, several studies have 

modeled EV travelers with different risk attitudes [53], [88]. For example, risk averse drivers will 

select slower routes with improved access to charging. These risk behaviors were considered in 

the shortest path calculation by placing higher weight on the risk term when calculating route 

costs [88]. Based on this assumption, EV drivers will take different routes between the same 

origin-destination pairs based on their risk tolerance. A similar study analyzed EV driver data 

and recommended to include SOC origin, SOC destination, and en-route charging access as 

well as risk attitudes in the route cost formulation [53]. User equilibrium models have also been 

developed to include EV charging behavior by adding charging costs to link cost functions 

based on where charging stations were located [89]. ABMs have also been used to model EVs 

due to their flexibility is creating rules and/or using heuristics to simulate travel behavior. For 

example, [90], [91] both use SOC thresholds to send vehicles to charge when operating in an 

on-demand, shared service setting. Finally, eco-routing behaviors have been observed for EV 

drivers [64]. Therefore, factors that impact energy consumption (stop-and-go conditions, slower 

speed roads, grade, etc.) should be considered when calculating shortest cost paths for EV 

drivers. 

2.3 Key Findings 

The key findings listed below are based on a review of existing literature related to travel 

behavior changes resulting from traveler connectivity, AVs, and EVs, and modeling approaches 

to quantify network impacts from such changes. The first and second sets of key takeaways 

focus on behavioral impacts and modeling approaches, respectively. 

Behavioral impacts: 

• A significant behavioral shift towards the use of new, fleet-based mobility service models 
(enabled by connectivity) has led to new interactions between travelers and infrastructure 
(fleet-optimal behaviors, user optimal deadheading behavior, and new interactions with the 
curb).  

• Greater access to real-time information has led to more rational behavior, greater use of 
alternative modes, and new traveler-infrastructure use patterns.  

• A research gap exists that studies traffic impacts of real-time recommendations (e.g., 
oscillations in congestion/recommendations between alternative routes) due to limited 
access to digital navigation data.  

• Algorithms that make travel recommendations in real-time (Google Maps, Waze) can have 
significant impacts on individual decision making because travelers are continuously looking 
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to minimize travel time and uncertainty. This has led to misuse of transportation 
infrastructure. 

• Highly and fully automated vehicles (L4-L5) reduce travel disutility for work and long-
distance trips. This means that travel time costs felt by individuals are less when using an AV 
because that time can be used to pursue other activities. This is positive for individual 
travelers because they experience the direct benefits of automation. However, this also 
means that individual travelers are less impacted by congestion and delays, which could 
increase system level costs. 

• Zero occupancy travel will make decisions based on monetary cost minimization with little 
sensitivity to travel time. 

• Zero occupancy travel behavior is highly uncertain. Most studies have focused on parking; 
however, new uses and service models are expected with full automation. 

• SAE L2-L3 systems are being developed/deployed by many manufacturers using pre-
mapped roads. A research gap exists that explores potential travel behavior change 
resulting from these new automation features that are constrained to specific locations and 
operational design domains. 

• The expected reduction in costs for shared AV mobility systems (operating like a ridehailing 
platform) will likely result in significant mode shift from both public transit and private 
vehicles. 

• Travel decision making becomes much more complex for EV drivers as they must consider 
SOC at origin, estimated SOC at destination, en-route charging access, and charging 
availability at the destination when making mode and route choices. 

• Different EV drivers exhibit different risk behaviors when it comes to range anxiety, which 
can dramatically shift their travel choices. 

• EV drivers tend to exhibit more eco-friendly driving behaviors, such as trip chaining and eco-
routing.  

Modeling approaches: 

• New modeling approaches are being developed to capture changing travel behaviors 
resulting from emerging technologies. However, most methods are specific to one or a few 
use cases and development is mostly being conducted in the research setting. 

• ABMs provide the flexibility needed to model heterogeneous travel behaviors, emerging 
modes, and complex/dynamic interactions. Interpretability and feature sensitivity remains an 
issue due to numerous complex interactions between travelers and infrastructure. 

• Numerous models have been developed/proposed to simulate fleet-based services that 
include fleet optimal decision making, deadheading behavior, and pickup/drop-off behaviors. 
However, model simplifications are needed to isolate impacts and interpret findings. 

• AV and EV travel behaviors can be incorporated into existing tools by modifying demand, 
supply, and travel cost functions used to model travel choices. For example, travel costs and 
VOTT can be reduced for AV travel, or SOC and charging availability can be integrated into 
route cost functions for EV drivers. 
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• The impacts from real-time routing recommendations are typically modeled by allowing 
travelers to deviate from their original route based on real-time information using simplified, 
symmetrical networks. However, evaluating such behaviors, such as oscillations caused by 
a time lag in congestion after numerous travelers deviate from their original routes, has not 
been studied using real-world behaviors and realistic network configurations. 

• Zero occupancy travel choices have been modeled based on monetary cost minimization 
(operational costs + parking fares).
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3 Potential Synergies and Conflicts 

Numerous travel behavior shifts have been identified resulting from AV, traveler connectivity, 

and EV technologies in isolation, all with potential to significantly impact network efficiency and 

performance. However, a deeper understanding is needed as to how these mega-trends interact 

with one another in realistic environments where the three technologies coexist. There is also a 

need to integrate these findings into current AMS toolsets to better estimate impacts of these 

technologies and inform requisite policies and/or designs that maximize societal benefits. The 

following section takes findings from the literature review to help identify potential relationships 

(complementary or competitive) between the various technologies and guide future research 

activities. 

3.1 Automation & Connectivity 

Network efficiency [complement]: Assuming that policy/regulatory frameworks are in place to 

ensure that automated decision-making is in the best interest of society (i.e., AVs programmed 

to maximize system benefits), the pairing of automation and connectivity technologies can 

improve data processing and optimization times to react quicker to incoming data resulting in 

improved safety and efficiency. Connectivity also provides an improved representation of 

surrounding conditions to augment data received from onboard sensors to further improve 

decision making tasks. From a travel behavior perspective, this combination of technologies has 

the potential to shift en-route travel decisions (departure time, routing, parking) from user to 

system optimal. 

Network inefficiency [conflict]: Previous studies have shown that drivers make rational (or 

selfish) decisions when real-time information is provided. This behavior, coupled with 

recommendation systems that use simple heuristics, can lead to transportation network misuse 

and increased congestion. If AVs are privately owned and programmed to maximize user utility 

(which is likely), it is expected that these issues will only be exacerbated. In addition, local 

context (e.g., steep grades, one lane roads, school zones) will be even more important to 

consider when making routing decisions as AVs will have less experience in such scenarios, 

which will result in increased risks.  

Affordable mobility alternatives (shared service model) [complement]: The combination of 

automation and connectivity can enable new mobility service models that are more convenient, 

efficient, and affordable. Currently, labor costs for public transit service are close to 70% of the 

total operating costs. If labor costs can be removed, the costs of shared mobility systems will 

decrease drastically resulting in improved access and potentially reduced vehicle ownership. 

Connectivity and automation technologies also enable more flexible (on-demand) and 
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convenient (door-to-door) service, which can result in numerous benefits to access, efficiency 

(fewer, high utilization vehicles serving the same demand), and sustainability. From a behavioral 

perspective, if such a model takes hold, we can expect mode shift between both public transit 

and private vehicles to a more shared, on-demand system. Vehicle behaviors will shift from user 

optimal to fleet optimal (which can result in system optimal conditions at high enough fleet 

penetration levels [25]), repositioning strategies between passengers will be profit maximizing, 

and interactions at the curb will be more short-term (pickup/drop-off) as opposed to longer-term 

parking. 

Lower costs to travel (private ownership model) [conflict]: The combination of automation 

and connectivity can lower marginal costs of travel by allowing travelers to disengage from all 

decision making. In this situation, the generalized cost of travel decreases for the user due to 

lower stress and travel time sensitivity. Additionally, efficiency gains can be achieved through 

more efficient driving maneuvers (e.g., smaller headways, smoother driving, platooning). The 

high upfront costs for connected automated vehicles will reserve these benefits to higher-

income populations and lead to increased driving (and congestion) as the service gap between 

personal driving and alternative modes (public transit) continues to grow. From a travel behavior 

standpoint, we can expect increased driving from affluent populations due to lower costs for 

travel. The combination of connectivity and autonomy also provides additional uses and 

flexibility for zero occupancy trips (e.g., delivery, errands, cruising, collaboration to create 

congestion to reduce cruising costs), thus increasing VMT. This scenario will lead to high 

societal costs due to costs felt by conventional drivers in a mixed environment. 

3.2 Automation & Electrification 

Improved access to charging [complement]: The primary constraints for EVs compared to 

traditional ICE vehicles are related to battery range and access to charging. However, the ability 

to send EVs to charge when convenient is a huge advantage which will facilitate faster adoption 

of EVs. From a behavioral perspective, the influence of certain factors (e.g., SOC at destination, 

destination choice, availability of charging at destination, eco-routing, trip cancelation / 

abandonment) on travel choices will become less sensitive with the ability to expand charging 

“catchment areas” and decouple the need for charging at travel destinations.  

Regional travel constraints [conflict]: Automated vehicles reduce VOTT for long-distance 

trips (primarily for trips between 100-500 miles) and allow for resting/sleeping while traveling. 

This shift in travel time flexibility can lead to induced demand and significant mode shift from 

short-haul flights due to drastic reductions in travel costs. This change in travel behavior can be 

beneficial to the environment with EVs, however, range limitations negate the benefits by adding 

travel time and inconvenience due to required charging along the route. This will be especially 

detrimental for overnight trips. From a travel behavior perspective, this limitation will likely lead 

to slower adoption of electrified AVs and increased ICE AV purchases to ensure AV benefits are 

fully realized. 
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Empty vehicle routing [conflict]: Automation enables zero occupancy travel, which can lead 

to a significant increase in VMT. Based on the literature, zero occupancy travel decisions will 

largely be based on monetary cost minimization. Therefore, there will be an incentive to route 

automated EVs on local roads because EVs are most efficient at slow speeds and in stop-and-

go conditions. The combination of technologies can significantly impact network efficiency 

without the appropriate policies in place. 

3.3 Connectivity & Electrification 

Enhanced charging reliability [complement]: The most important factors affecting travel 

choice for EV users are related to battery and charging constraints. Connectivity technologies 

that provide real time charging information (wait times, charging costs, locations, charging 

types) to EV travelers can drastically reduce associated travel costs related to range anxiety 

and reliability. The combination of the two technologies can lead to faster adoption of EVs and 

more rational travel and charging behavior. 

“Selfish” routing and charging [conflict]: While reliable access to charging information can 

promote faster EV adoption, the same algorithms that recommend selfish routes for network 

travelers (e.g., Google Maps, Waze) can behave similarly when recommending charging, thus 

exacerbating congestion and wait times. From a travel behavior perspective, it is anticipated 

that EV drivers will look to maximize individual utility when user optimal routing and charging 

recommendations are provided. In this environment, negative system level outcomes are 

expected for the same reasons why increased congestion is observed for “selfish” routing 

algorithms (use of heuristics, lack of full picture of network conditions, no context specific 

information, etc.). 

3.4 Travel Behavior Change Due To The Convergence Of 

Three Mega-Trends 

The convergence of three mega-trends will drastically impact the way travelers use and interact 

with the transportation system. Based on the literature reviewed, significant travel behavior 

shifts are already occurring due to traveler connectivity technologies and electric vehicles. From 

a traveler connectivity standpoint, access to new information and services have increased 

benefits for individual travelers through improved travel time reliability, convenience, and greater 

access to alternative modes. At the same time, social costs have been observed in the form of 

increased congestion and misuse of transportation infrastructure due to selfish routing and 

simple heuristics used by digital navigation apps. The opposite was observed for EVs, as 

battery range constraints and lack of reliable access to charging has increased individual travel 

costs (e.g., range anxiety, more complex decision-making, battery reliability) and reduced social 

costs through emissions reductions. Highly and fully automated vehicles promise both individual 

and societal benefits, which will largely depend on which operational model that takes hold 
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(private versus public). However, due to limited deployments, the impacts from AVs remain 

speculative.  

Thinking towards the future when L4-L5 AVs are also available, it is expected that individual 

benefits will be magnified through cheaper, more convenient travel options. Social benefits are 

also expected through enhancements to safety, efficiency, accessibility, and sustainability. 

However, when thinking a little deeper about the various technologies, their interactions, and 

likely use cases, it is also easy to dream up scenarios where significant societal costs are 

incurred due to decisions that maximize individual utility. System level impacts of such 

behaviors will be more pronounced in the connected, autonomous, and electrified era because 

charging and parking choices will have greater impacts on network performance. For example, 

charging type, locations, and pricing will impact behavior more compared to ICE vehicles and 

gas stations because of range anxiety, fewer charging options, and larger variation in fuel 

pricing (e.g., time of day pricing). The same goes for parking, as decisions become more 

impactful as options increase (e.g., send car home, send car to charge, seek congestion to 

avoid paying parking fares, among others). In addition, growing system complexity will result in 

greater reliance on simple recommendation systems (e.g., apps that provide recommendations 

for charging, parking, and routing), which can lead to increased system delays. And research 

has already shown that close to 75% of app users follow recommendations more than 80% of 

the time [17], which can result in significant impacts. In conclusion, widespread behavior shifts 

are expected, however, large uncertainty still exists as to how the three mega-trends 

technologies will be used and their resulting impacts—positive or negative—to the 

transportation system. Many realistic scenarios exist where complementary relationships 

between the technologies lead to greater societal benefits. However, such relationships are not 

guaranteed, and strategic interventions will likely be needed to ensure societal net benefits. A 

summary of findings from the literature related to potential behavioral shifts and their resulting 

impacts are shown in Figure 2.  

It is also important to note that traveler connectivity, automation, and electric vehicle 

technologies also enable decision makers to rethink how fueling (more specifically, the electric 

grid) interacts with transportation infrastructure. Automation and connectivity enhance fueling 

flexibility, which is currently needed due to numerous grid constraints. At the same time, regional 

electricity generation is usually managed and operated by one decision making entity. 

Therefore, there is opportunity to institute various pricing and incentive strategies to help 

manage both charging demand and traffic conditions. In such a setting, travel behaviors can be 

managed to maximize system-level benefits. Therefore, it will be important to study behavioral 

responses to new and innovative dynamic pricing schemes that can vary in space and time 

enabled by the three mega-trend technologies.
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                       Source: ITS JPO 

Figure 2. Summary of Findings Related to Travel Behavior Changes Resulting from AVs, EVs, and Traveler Connectivity 

Technologies.
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4 Modeling EV/AV/CV with AMS tools: 

Gaps, Challenges, & Recommendations 

Based on the literature, several behavioral shifts due to traveler connectivity, AVs, and EVs were 

identified that can significantly impact AMS results if they are not considered during modeling 

and simulation tasks. The general finding considering all three technologies is that travel costs 

are expected to decrease resulting in increased VMT. Mode shift is also expected from 

alternative modes to electric AVs (both in private and shared service models) due to improved 

convenience and reduced travel costs. Generally, these behavioral shifts are straightforward to 

model within current AMS tools by altering travel time and travel cost functions. Other potential 

shifts in travel behavior were also identified that present new modeling challenges due to shifts 

in how travelers use and interact with transportation infrastructure. These observed and 

projected behavioral changes are the focus of the following section, and are as follows: 

• Shared service models are growing in popularity due to a seamless travel experience 
enabled by connectivity (e.g., door-to-door, on-demand, frictionless payment, 
driver/passenger rating systems, information provision). As fleets grow to accommodate 
rising demand, new travel behaviors and vehicle-infrastructure relationships will need to be 
captured in modeling and simulation tasks, such as fleet optimal behaviors, deadheading 
decisions, and pickup/drop-off interactions with the curb.  

• Zero-occupancy trips will be significant contributors of increased VMT in a highly automated 
environment. Zero-occupancy travel choices will also differ from conventional drivers, and in 
many cases, will lead to high system costs without the appropriate policies in place. For 
example, cost minimizing behavior for autonomous EVs would be to seek out congestion to 
conserve energy. There is also uncertainty as to what types of trips will be taken by zero-
occupancy vehicles (e.g., EVs to charge), and how goods/services providers might alter 
their business models to accommodate a highly/fully automated environment (e.g., grocery, 
drycleaning, pickup/delivery). All of this is to say that significant zero-occupancy travel is a 
realistic outcome of automated vehicle technologies, and new travel behaviors and service 
models need to be considered to realistically capture network impacts. 

• No roads are off limits. Digital navigation apps are designed to consider all road types with 
no local context, which can lead to widespread misuse of transportation infrastructure. 
Examples include the re-routing of tractor trailers along local roads with insufficient 
clearance and/or sharp turns and steep grades and re-routing commuter traffic along local 
roads with significant pedestrian use. AMS tools are designed to capture network impacts 
when travelers use the infrastructure as intended. However, in the new era of digital 
navigation, it will be important to capture the impacts of new individual decision-making 
systems and their misuse of the transportation infrastructure system. AVs and EVs can 
exacerbate these issues when similar recommendation systems are also used for charging 
and autonomous parking.   
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• EV drivers must consider new factors (SOC at origin, SOC at destination, locations of 
charging, energy-efficient routes, and risk behaviors) when making travel choices. These 
factors can lead to different travel choices between individuals traveling between the same 
origins and destinations. Heterogeneous behaviors, spatial layout of charging, and potential 
charging supply/demand mismatches must all be considered to capture realistic EV travel 
behavior. In addition, autonomous EVs will also behave in unforeseen ways as self-charging 
now becomes feasible and zero-occupancy travel will likely seek out highly congested 
routes to minimize energy consumption and resulting costs. 

The key takeaway from the above findings is that the transportation system is growing in 

complexity and there is a need to integrate these more complex and varied decision-making 

processes into AMS tools. Traveler connectivity has enabled new modes and service models 

that are affordable and convenient. Significant growth in the use of these services will require 

AMS tools to model heterogeneous vehicle behaviors with different objectives. Additionally, new 

situations will need to be integrated, such as the ability to pickup/drop-off anywhere or at 

managed curbs designed to optimize short term parking situations, which will become prevalent 

in the age of ridehailing and autonomous vehicles. Vehicle powertrain types will also be 

important to include when modeling travel choices. From the literature, EV driver decisions, 

starting with mode choice and ending with parking decisions all factor in SOC and charging 

availability. New utility functions that also include risk behaviors and spatial-temporal charging 

conditions will need to be integrated with current AMS tools to accurately capture EV driving 

behaviors. Finally, fully automated vehicles no longer require drivers, which can fundamentally 

change how people interact with the transportation system. It is anticipated that zero-occupancy 

vehicles will behave in a cost minimizing fashion, which can lead to increased congestion, 

especially with high EV penetration rates. AMS tools need to incorporate these behaviors and 

develop a deeper understanding of how these behaviors may evolve as new modes and 

services enter the market.  

Historically, AMS tools have been developed to manage vehicle flows throughout the 

transportation network. However, recent efforts have been made to incorporate new modes and 

travel behaviors to capture realistic insights due to the integration of new technologies and 

services. The following section characterizes current AMS capabilities and identifies potential 

shortcomings related to the various travel behavior shifts mentioned above. 

Shared service models: Due to the rapid growth in ridehailing and other on-demand services, 

many commercially available AMS tools, such as PTV Group (Visum, Vissim, MaaS Modeler) 

and Aimsum, have developed on-demand fleet management packages to help inform strategic, 

tactical, and operational decisions for fleet managers and city/regional planners alike. In both 

cases, fleet optimal algorithms can be specified, and resulting congestion impacts from 

access/egress can be computed. The drawback to these tools is that they were developed for 

transportation engineers/fleet managers faced with decisions about the deployment of on-

demand services, fleet sizes, and service areas. Actual driver behaviors associated with 

ridehailing services (trip cancelations, deadheading, and pickup/drop-off) are not captured and 

modeled for realistic network impacts. In addition, the changing behaviors and operational 

models related to vehicle automation and electrification are not captured by existing AMS tools. 



Modeling EV/AV/CV with AMS tools: Gaps, Challenges, & Recommendations  

 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 
 

Connected, Automated, and Electric: Modeling Traffic and Traveler Choice Considering the Three Mega-Trends |  33 

For example, automation drastically cuts travel costs, which would incentivize more aggressive 

repositioning strategies for fleet vehicles (i.e., willingness to travel further distances to serve 

more expensive trip requests). On the other hand, EV drivers will likely exhibit more 

conservative repositioning strategies or choose to take more energy-efficient local roads to 

minimize energy costs and charging instances and maximize profits. These behaviors are 

particularly important as both Uber and Lyft have pledged to be zero-emissions platforms by 

2030 [92], [93]. Overall, commercial tools do exist to model some of the impacts from shared 

fleet operations. However, additional capabilities are needed to capture the new driver 

behaviors that might result from autonomous and electric vehicle technologies, and are as 

follows: 

• Repositioning strategies – how will EV drivers/AVs behave between passenger drop-offs 
and subsequent pickups? And how will they differ from current operations? 

• Routing decisions – profit maximizing routes might shift for EV drivers as vehicles are more 
efficient at slower speeds. 

• Pickup/drop-off – AVs will likely be programmed to seek areas outside of traffic streams, 
while EVs might seek zero/low-emissions curbs. 

• Fleet behavior – AV fleets will be centrally operated and compliant, which will behavior closer 
to fleet optimal compared to driver-based ridehailing where drivers can still make individual 
decisions. EV fleets will also need to consider charging during operations, which might lead 
to different routing and deadheading choices to maximize EV fleet performance. 

Zero-occupancy trips: There is a rich literature related to integrating AVs into microscopic 

modeling frameworks by modifying supply and capacity characteristics to mimic reduced 

headways and reaction times with commercially available tools. Outputs from such models can 

be used to simulate impacts at the network level using a multi-resolution modeling framework. 

However, missing from these tools are the zero-occupancy driving state, which exhibits different 

behavior and can be a significant contributor to VMT. The types of behaviors exhibited by zero-

occupancy vehicles will differ depending on trip type and duration. Lower duration trips will still 

place value on being able to hail the vehicle in a reasonable amount of time. Longer duration 

decisions will likely be monetary cost minimizing, which could result in cruising behaviors that 

seek congestion to avoid parking fares. Electrification adds further issues as EVs are most 

efficient at slow travel speeds and in stop-and-go traffic. The ability to charge autonomously will 

also play a role in how vehicles move throughout the network seeking charging options that 

minimize total costs. Currently, AMS tools do not model these trips, which can account for 

significant VMT. Further research is also needed related to new travel behaviors resulting from 

electric EVs, such as travel cost functions and self-charging behaviors.  

Network utilization from digital navigation apps: Starting in 2013, digital navigation apps 

began offering routing recommendations [4]. This new offering has fundamentally changed how 

travelers move through and interact with the transportation network. City planners and 

engineers design the transportation network based on hierarchical roadway types and various 

controls to help manage system efficiency. This design framework is how AMS tools are 

developed to help inform designs and investments based on a general understanding of how 
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the network will be used. However, routing recommendation apps fundamentally change how 

the network is used by oversimplifying the infrastructure and providing selfish routing 

recommendations. This has led to numerous problems that includes higher volumes of traffic 

using low-speed local streets with many pedestrians and routing vehicles on streets with limited 

site distances and narrow lanes, leading to increased delays and collisions [4]. These issues will 

be exacerbated with automated and electric vehicles because similar heuristic routing strategies 

will be used for charging and parking recommendations, which can lead to significant network 

delays. Additionally, AVs will likely be programed to behave conservatively, which might result in 

further delays when presented with new situations recommended by real-time navigation apps 

(e.g., narrow steep neighborhood roads versus arterials). In the absence of improved 

coordination between app providers and transportation decision makers, AMS tools need to 

capture this behavior to flag problem areas for strategic interventions. Capturing these 

behaviors would require higher resolution network representations and relaxed assumptions. 

Multi-resultion modeling frameworks will also be needed to capture local characteristics and 

their resulting network-level impacts.  

EV behaviors: Numerous models exist that were developed to help guide the transition for 

electric vehicles, such as Aimsum’s battery consumption modeling capabilities [94], HIVE’s EV 

fleet modeling tools [90], and EVI-X’s tools to inform large-scale charging deployments [95]. 

However, the more complex individual decision-making processes that include risk behaviors, 

SOC, and charging accessibility are not currently captured in commercially available AMS tools. 

And according to the literature, these factors can have significant impacts for EV travel choices 

that include the choice to take a trip or not (dependent on vehicle range, charging accessibility, 

and current SOC), mode choice, departure time (current SOC), trip cancelation, route choice 

(charging accessibility, energy-efficient route) and parking decisions (access to charging). These 

choices will also vary based on risk attitudes due to unfamiliarity with EV technologies and 

variability in battery range due to factors such as weather and road grade. In addition, 

automation will add new considerations when modeling EVs in the transportation network. First, 

in the zero-occupancy state, autonomous EVs will seek out low-speed, stop-and-go routes to 

conserve energy and minimize costs when travel time is not a consideration. Therefore, an 

improved understanding of wait time and travel cost sensitivities are needed for autonomous 

EVs. Next, automation relaxes spatial constraints related to charging, which are currently 

governing many EV travel behaviors. Travelers can now choose destinations without 

considering SOC and access to charging as vehicles can now drive themselves to charging 

opportunities. These behaviors are not well understood and are not currently captured by AMS 

tools. In conclusion, the rapid proliferation of EVs (expected to reach 62-88% of new car sales 

by 2030 by some estimates [96]), will shift travel behaviors for the majority of drivers, which are 

fundamentally different than those exhibited by ICE vehicle drivers. AMS tools must consider 

these changes through an improved representation of EV decision making processes and 

integration of charging conditions (for all charging speeds) to capture realistic network 

behaviors. The charging process itself will also require modeling to estimate waiting and re-

routing behaviors during peak charging periods. 
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Based on the review of available AMS tools, several gaps were identified in their abilities to 

capture and model changing travel behaviors in the connected, automated, and electrified era. 

Shortcomings identified in the previous sections were used to inform recommendations related 

to AMS tool enhancements, and are as follows: 

Shared service models: 

• Develop deeper understanding related to AV and EV fleet behaviors deployed as ridehailing 
services, such as how routing, charging, cost of travel, and parking/curb interactions will 
likely change compared to current driver-based services. 

• Integrate fleet (% EV and % AV), individual (risk attitudes for EVs), and vehicle level (SOC, 
range, fuel type) characteristics to more accurately model travel choices at a higher level of 
granularity.  

Zero-occupancy trips: 

• Model vehicle travel that begins at the destination and makes cruising/parking decisions 
based on zero-occupancy travel cost functions. 

• Model new, potential zero-occupancy scenarios, such as “self-charging” for EV vehicles or 
running errands/deliveries. 

• Integrate new decision-making processes/choices, such as tradeoffs between parking costs 
and estimated pickup wait times for private AVs and quantifying this relationship as a 
function of duration of time spent at the location. 

• Modify travel cost functions and the relative importance of different factors (e.g., travel cost, 
travel time, reliability) for zero-occupancy trips based on trip types. 

Network utilization: 

• Relax assumptions related to facility use and integrate context-specific information that could 
impact network performance if the road is not used as intended (e.g., bridge clearances, 
difficult roads [narrow, steep grades, etc.]). 

• Develop methods to model rational decision-making in the EV charging and AV parking 
contexts. 

EV charging/routing: 

• Capture different risk behaviors related to EV charging and routing. 

• Integrate the details needed to capture realistic EV travel behavior: 1) vehicle range, 2) SOC 
at origin and destination, 3) charging supply including charger types (L1, L2, DCFC), 
location, pricing information, and estimated wait times. And how travel choices (trip 
abandonment) might change as a function of battery reliability (weather conditions, energy-
intensive routes, etc.) 

• Consider zero-occupancy charging behavior that includes modified travel cost functions and 
the influence of charging reliability, speed, pricing, and wait times on self-charging choices. 

• Model the charging process itself based on supply/demand (e.g., queueing, reliability, 
charging time as a function of outside conditions) and vehicle/charger technology. 
Recommendation systems, constrained supply, and longer fueling times will impact the 
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surrounding network in unforeseen ways. The charging phase of a trip will also become 
much larger, which should be integrated with travel choice models. 

Figure 3 summarizes the above findings for the three mega-trend technologies in isolation and 

when interacting in a real-world setting. Specific gaps/challenges related to both behavioral 

response to emerging technologies and modeling limitations are identified for the different 

deployment scenarios. 
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                    Source: ITS JPO 

Figure 3. Summary of Gaps/Challenges Related to AMS Tools in the Era of Traveler Connectivity, AVs, and EVs.
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5 Conclusions and Next Steps 

This analysis set out to gather research related to the travel behavior impacts of connectivity, 

AVs, and EVs. The scope of the work was narrowed down to focus on traveler connectivity 

(access to real-time information through smartphone apps and new modes and services 

enabled by connectivity), highly/fully automated vehicles, and personal EVs due to their 

potential to significantly impact travel behaviors. Significant literature exists focused on 

connectivity, AVs, and EVs, which is difficult to fully capture in one white paper. However, 

specific questions were addressed, and a summary of findings are provided below.  

5.1 Responses to key questions 

What are the travel behavior impacts resulting from automation, connectivity, and vehicle 

electrification? 

All three mega-trend technologies impact travel choices in diverse ways. Traveler connectivity, 

AVs, and EVs provide numerous benefits to the individual traveler by reducing travel time 

uncertainty, providing new, convenient alternatives to private vehicle travel, reducing travel costs 

due to ability to multi-task, and reducing monetary operational costs by smoother driving 

behaviors and lower costs of electricity (compared to gas). The specific travel behaviors 

identified for each technology are as follows: 

• Digital Navigation [traveler connectivity] – Real-time travel information and constant 
recommendations has led to selfish travel behaviors and misuse of transportation 
infrastructure (e.g., using local roads for long-distance travel and freeways for local travel). 

• Shared service models [traveler connectivity] – Smartphone connectivity has led to 
numerous new and convenient mobility service offerings, which has led to significant growth 
of these services, which behave and interact with transportation infrastructure in new ways 
(fleet-based decision making, deadheading behaviors, pickup/drop-off curb interactions). 

• Induced travel [automated vehicles] – Lower VOTT were observed for commute and long-
distance trips for automated vehicles, leading to more travel and lower travel time 
sensitivities. This finding also indicates that travelers are more willing to experience delays 
when multi-tasking options are available. 

• Zero occupancy travel [automated vehicles] – Additional travel without a passenger is 
expected for AV owners because travel costs can be reduced or eliminating by sending 
empty vehicles to cheaper parking or to pick up family/friends. These behaviors will create 
additional trips affecting traditional trip generation models. Additionally, travel cost functions 
will require modifications because monetary factors will become more important compared 
to travel time and delay costs when vehicles are operating in zero occupancy mode. 
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• Complex decision-making processes [electric vehicles] – EV owners must consider SOC at 
origin/destination, battery range, access to charging, charger reliability and wait times, and 
potential charging at the destination when making travel choices. These complex choices 
lead to a variety of different travel behaviors, from eco-routing to tradeoffs between detour 
length and charging speeds/reliability, among many others. 

• Risk attitudes [electric vehicles] – EV owners also exhibit different risk attitudes, which can 
lead to different choices that are tied to the current constraints of EV technology (range, 
limited access to charging, large variations in range) and technology unfamiliarity. 

What are some potential synergies and conflicts between emerging technologies that 
could alter travel behavior? 

The combination of mega-trend technologies was found to be complementary in many settings. 

However, it is also easy to identify situations where the coupling of two or more technologies led 

to individual benefits at the expense of system performance. The identified relationships were 

as follows: 

Traveler connectivity + AVs: 

• Network efficiency [Complementary] – Real-time data processing and automated decision 
making can help shift network behaviors to be more system optimal (especially in fleet 
settings) in the appropriate policy and regulatory framework. 

• Network inefficiency [Conflicting] – Without policy/regulation, AVs will likely be programmed 
to maximize individual benefits at the expense of network costs. Enhanced automation 
capabilities with real-time network information can act upon real-time data from multiple 
sources to further improve individual decision making resulting in degraded network 
performance. 

• Transportation affordability (shared service models) [Complementary] – Removing the driver 
for public mobility systems can drastically reduce operational costs, which can be passed on 
to users in the form of reduced fares and improved service performance. 

• Reduced operational costs (private service model) [Conflicting] – High upfront costs of AV 
technologies and low operational costs can lead to greater VMT (and congestion) by affluent 
populations, which will increase societal costs in a mixed-use environment. 

AVs + EVs: 

• Access to charging [Complementary] – Automation expands access to charging and 
decouples the need to have charging available at specific destination locations. The ability to 
send AVs to charge reduces EV constraints, leading to greater use and adoption at the 
expense of increased VMT. 

• Regional travel [Conflicting] – AVs provide new, convenient options for regional travel which 
can be cancelled out by limited range of EVs. This can lead to slower adoption of EVs to 
increased regional travel with ICE vehicles. 

• Zero-occupancy travel [Conflicting] – Zero-occupancy travel will seek to reduce monetary 
costs as travel time costs become irrelevant in many cases. This could result in electric AVs 
seeking out congestion and stop-and-go traffic to reduce energy consumption and 
associated costs. 
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Traveler connectivity + EVs: 

• Enhanced charging reliability [Complementary] – Real-time information related to routing, 
charger locations, and wait times will provide travelers with information to ease range 
anxiety and reduce overall travel costs related to EV travel. This will facilitate faster EV 
adoption and more travel using EVs. 

• “Selfish” routing/charging [Conflicting] – Access to more real-time information can also 
facilitate increased opportunities for individuals to make utility maximizing choices, which 
can cause greater network/charging congestion. 

What are the gaps/challenges related to representing travel behavioral shifts in current 

AMS tools? 

Based on findings from the literature review, four key areas were identified in which current AMS 

tools have shortcomings when it comes to modeling scenarios in the age of traveler 

connectivity, AVs, and EVs. The four focus areas were: 1) Shared service models, 2) Zero-

occupancy trips, 3) Network utilization, and 4) EV charging and routing. More specific details 

regarding gaps and challenges are as follows: 

• Shared service models – Need to integrate changing behaviors resulting from AVs/EVs for 
fleet-based mobility services with AMS tools, such as how drivers will behave when using 
EVs (near-term) and how operations will differ when shared mobility services eliminate 
drivers and use AVs (longer-term). These behaviors are different compared to individual 
travelers because different factors are considered when making choices about picking up 
passengers, traveling between passengers, and dropping off passengers. Fleet decision-
making also comes into play, as both driver-based and autonomous on-demand fleets are 
centrally operated. 

• Zero-occupancy trips – New types of trips and new interactions with infrastructure are 
enabled by AVs, such as autonomous charging, parking, cruising, and pickup/drop-offs. 
Zero-occupancy VMT is expected to be significant, which will require modeling these types 
of trips (including the charging phase) to better understand impacts and design 
interventions. New tradeoffs will also need to be evaluated (access time vs. parking costs) to 
gain a deeper understanding about decision-making in the mega-trend era. 

• Network utilization – Travel connectivity apps that provide real-time recommendations 
about routing, charging, and parking can result in significant network delays and misuse. 
Understanding these new interactions and incorporating them into AMS tools will be 
important to design strategic interventions. This will likely require a high-resolution 
representation of the network that includes information such a bridge clearance, steep 
grades, sharp turns, lane widths, among others and methods to estimate macro-level 
impacts using multi-resolution modeling frameworks. 

• EV charging/routing – Travel choices become more complex in the mega-trend era due to 
numerous new constraints and capabilities. In addition to travel cost and travel time, 
common travel choices will require information related to SOC at origin/destination, vehicle 
range, charging supply including charger types, location, pricing information, and wait times. 
In addition, due to variation in battery range, different risk attitudes will also have to be 
modeled because route, charging, and cancelation decisions will vary between individuals. 
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Finally, charging itself now represents a significant part of a trip, which can have widespread 
network implications in not captured in modeling frameworks. 

Overall, the key takeaway from this study is that transportation systems are growing in 

complexity resulting in more complicated decision-making processes and new interactions and 

relationships between users, vehicles, and infrastructure. Individuals have different 

perspectives, risk attitudes, and internal utility functions that need to be captured in a more 

rigorous way as new services, information, and technologies flood the transportation landscape. 

The vehicles themselves will also exhibit different behaviors depending on if they are 

autonomous, part of a fleet, or electric. To capture these changing behaviors and interactions, 

AMS tools will need to develop methods to consider heterogeneous behaviors and 

characteristics at the individual, vehicle, and infrastructure component level. Charging network 

characteristics will also be increasingly important as EV market share continues to climb. 

Information such as charging speed, reliability, supply/demand characteristics at specific 

locations, inductive charging capabilities, among others will all influence EV travel behaviors in 

different ways.  

5.2 Recommendations for Future Research 

Travel choices differ significantly between ICE and EV drivers due to range anxiety, range 

constraints, and limited (not well distributed) charging infrastructure. EV and ICE drivers 

traveling between similar origin-destination pairs may take completely different routes and park 

at different locations based on their vehicle state of charge (SOC), risk attitudes, and charging 

access at the destination. Therefore, travel behaviors (including risk attitudes) as a function of 

vehicle fuel type need to be studied further and integrated into current AMS tools.  

Constrained charger supply in both time and space can significantly alter travel behaviors in 

unforeseen ways, especially when self-charging becomes available using autonomous vehicles. 

The charging portion of the trip (location, time required, wait times, charger type) is a significant 

factor impacting travel choices, which is often not considered in EV travel behavior studies. 

Further research is needed that quantifies travel behaviors as functions of charger locations, 

queueing at charger, charging times, charger types, and whether the vehicles are human driven 

or autonomous. These findings can help inform new traveler behavior models that capture 

complex decision-making processes for EV drivers and automated EVs. 

Real-time recommendations from travel apps, such as Google Maps or Waze, have drastically 

increased cut-through traffic and have caused problems when local context is not considered 

(e.g., bridge clearance for large trucks, school zones, steep grades). Such problems will likely 

increase in the megatrend era with recommendations for charging, eco-routing, autonomous 

parking, among others. Therefore, there is a need to study human responses to real-time 

recommendations (across a variety of contexts) and integrate these behaviors into AMS tools. 

There is also a need to better understand the underlying data that is being used to inform 

recommendations and the computational tradeoffs of including richer data streams for improved 

guidance. 



Conclusions and Next Steps  

 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 
 

42 |  Connected, Automated, and Electric: Modeling Traffic and Traveler Choice Considering the Three Mega-Trends 

Numerous automobile manufacturers are developing and deploying SAE L2-L3 (hands-free) 

systems using pre-mapped roads and/or specific operational design domains (ODD). In such 

ODDs, drivers can monitor the vehicle hands-free (for SAE L2) or can engage in other tasks (for 

SAE L3), reducing individual travel costs. The rapid development of these systems and scarce 

publicly available data limits our understanding of human decision making when presented with 

tradeoffs between travel time and ease of driving. To address this gap, further research is 

needed to identify changing travel behaviors resulting from commercially available, hands-free 

features. For example, will travelers select longer routes and/or prioritize pre-mapped routes 

(usually freeways) if they offered more hands-free driving? 

In the longer-term, highly automated vehicles (SAE L4-L5) bring new capabilities, which can 

alter the relationship between travelers, vehicles, and infrastructure. For example, zero-

occupancy vehicles can be used to charge/park themselves and potentially run errands 

(assuming service models evolve with the technology). Such vehicles will utilize different cost 

functions compared to human drivers, with higher importance placed on monetary costs (e.g., 

parking costs, fuel costs) and reduced sensitivity to travel time/delay. The potential for zero-

occupancy travel to contribute to significant VMT, congestion, and delays highlights the 

importance of considering these types of trips in modeling and simulation exercises. In the near-

term, the majority of SAE L4-L5 vehicles will likely be part of a ridehailing fleet. And if such 

shared mobility services gain significant market penetration, it will be important to integrate fleet-

optimal algorithms (considering both AVs and EVs) and perspectives into AMS tools, which is an 

area with limited research. 
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